

DBs + GPUs: Where are we and what's next?

Bowen Wu

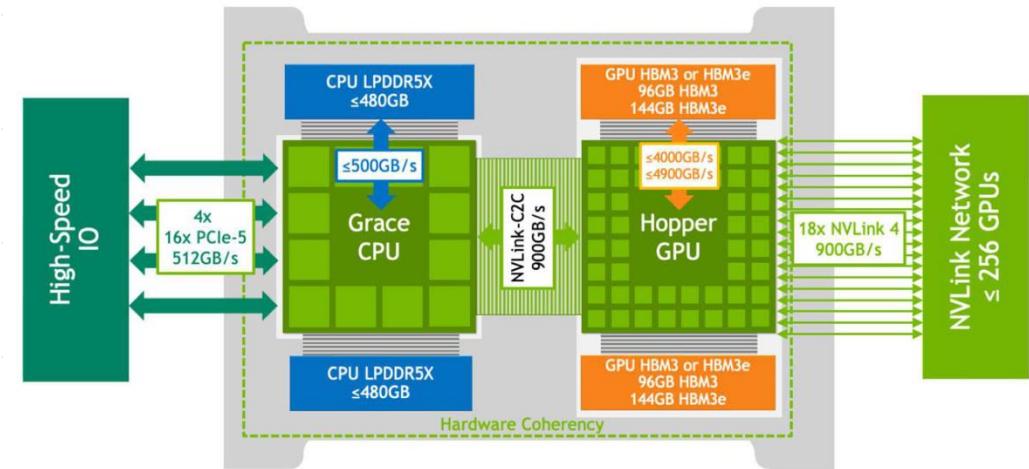
Systems Group @ ETHz

Lunch Seminar, 31/10/2025

Why run databases on GPUs?

	Active Threads	Memory Bandwidth	Memory Capacity
Nvidia V100 PCIe	163,840	897 GB/s	16 GB
Nvidia A100 SXM	221,184	1,935 GB/s	80 GB
Nvidia H100 PCIe	233,472	2,039 GB/s	80 GB
Nvidia H200	233,472?	4.8 TB/s	141 GB
AMD MI300X	?	5.3 TB/s	192 GB

Massive **parallelism** and high memory **bandwidth** make GPUs suitable for accelerating databases.



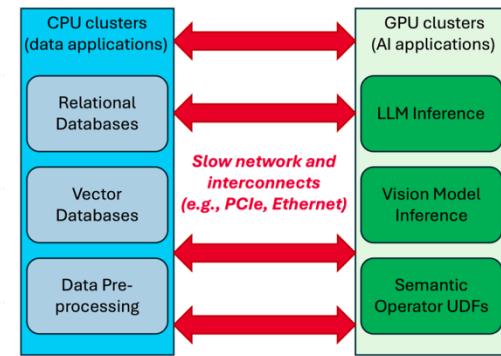
Fast **interconnects** and **networks** make it possible to process **large** datasets at an unprecedented speed.

Why run databases on GPUs?

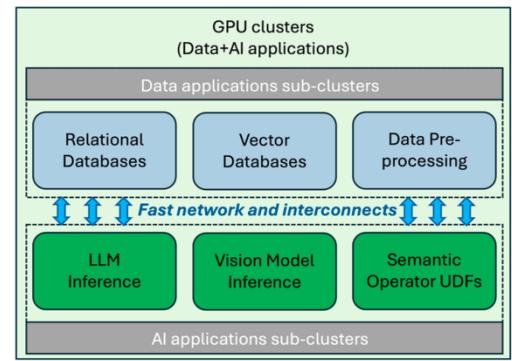
Microsoft inks \$33 billion in deals with 'neoclouds' like Nebius, CoreWeave — Nebius deal alone secures 100,000 Nvidia GB300 chips for internal use

News By [Sunny Grimm](#) published October 2, 2025

Data centers and clouds are being increasingly dominated by GPUs, which cannot be fully utilized by AI.



(a) Existing architecture.



(b) Prospective architecture.

Making both DBs and AI run on the GPUs enables optimizations to make both systems run more efficiently.

Current State

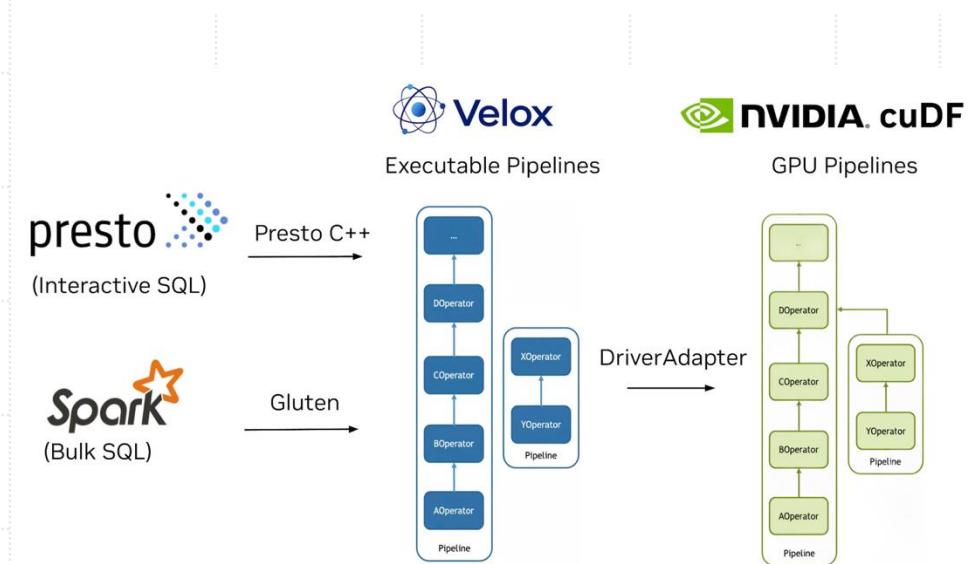
▪ Research

- More than two decades of research
- Crystal (fully in-GPU)
- Operator studies
- Maximus/Eiger (SG), Microsoft TQP, SiriusDB

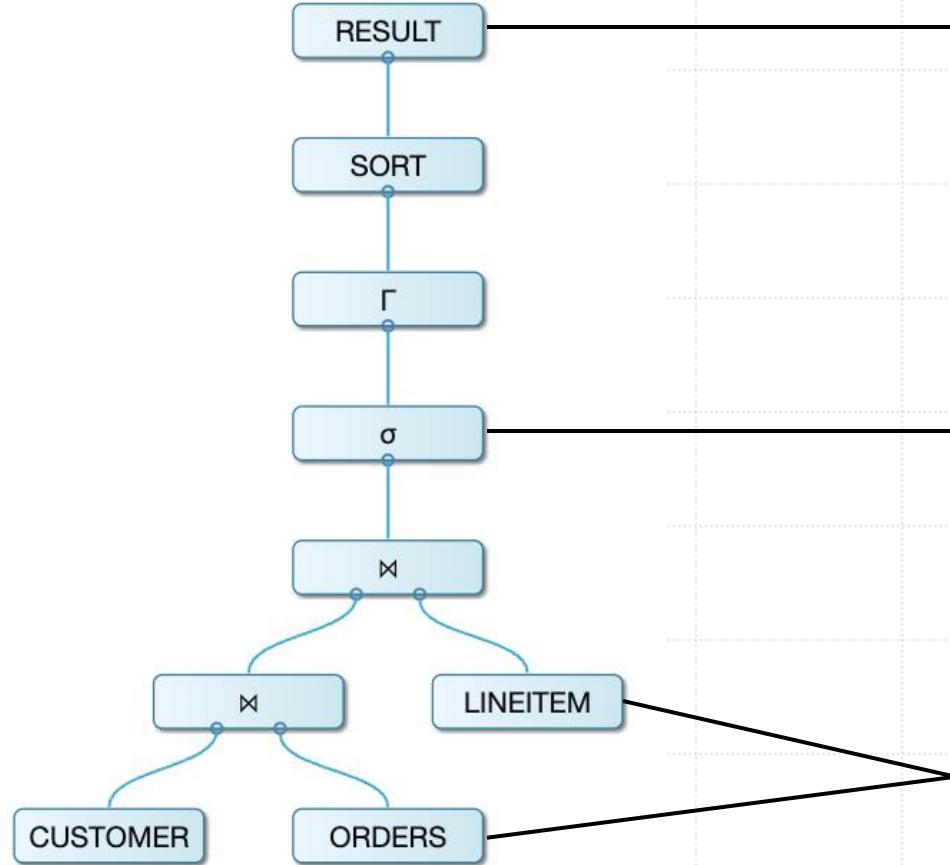
▪ Industry

- cuDF (NVIDIA), hipDF (AMD)
- BlazingSQL, Kinetica, HeavyDB, Voltron Data (Startups)
- Velox + Wave/cuDF (Meta)
- IBM, Databricks, Microsoft, ...

Velox now runs at GPU speed 🚀 IBM and NVIDIA have teamed up to bring cuDF-powered GPU execution to Velox delivering big gains for #Presto and Apache Gluten.

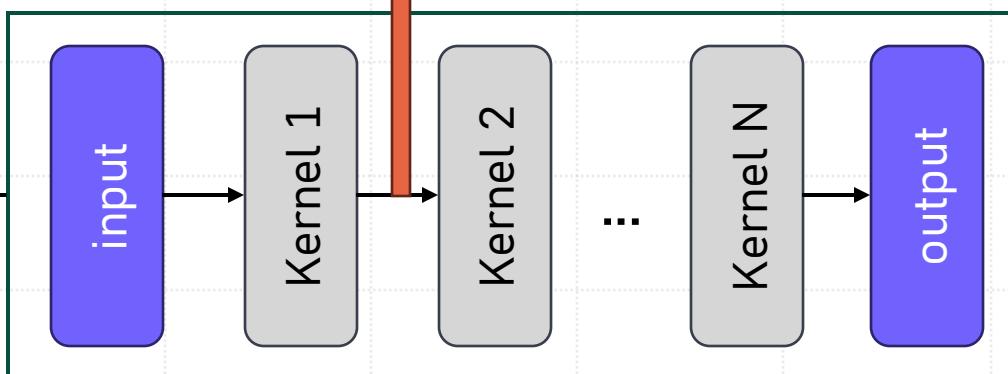


Introduction to GPU-based DB



Final results of the query often need to be sent back to the CPU.

Store and reload from the device memory.



Base tables are stored in CPU/GPU memory. If stored in CPU memory, then it needs to be moved to the GPU before processing.

Is the query exec bound by *GPU* or *IC*?

- **MaxBench** – Single-GPU DB Benchmark
- Authors: Marko Kabić, Bowen Wu, Jonas Dann, Gustavo Alonso

Table 1: Hardware Configurations for the empirical evaluation.

Configuration	C_1 = PCIe3+A100	C_2 = PCIe5+H100	C_3 = GH200 (NVLink4+H200)	C_4 = PCIe4+RTX3090
CPU	Intel Xeon Platinum 8171M	AMD EPYC 9124	NVIDIA Grace	AMD EPYC 7313
CPU cores	2x6	2x16	72 ARM Neoverse V2 cores	2x16
GPU	NVIDIA A100 40GB	NVIDIA H100 80GB	NVIDIA H200 96GB	NVIDIA RTX3090 24GB
GPU Mem. Bandwidth	1.55 TB/s	4 TB/s	4 TB/s	0.936 TB/s
GPU clock (base-boost)	765–1410 MHz	1080–1785 Mhz	1980–1980 Mhz	1395–2100 MHz
Power cap	100W	100W	624.15W / 900W	350W
Interconnect (IC)	PCIe 3.0	PCIe 5.0	NVLink 4.0	PCIe 4.0
IC Bandwidth (1-way)	16 GB/s	64 GB/s	450 GB/s	32 GB/s

MaxBench - Single-GPU DB Benchmark

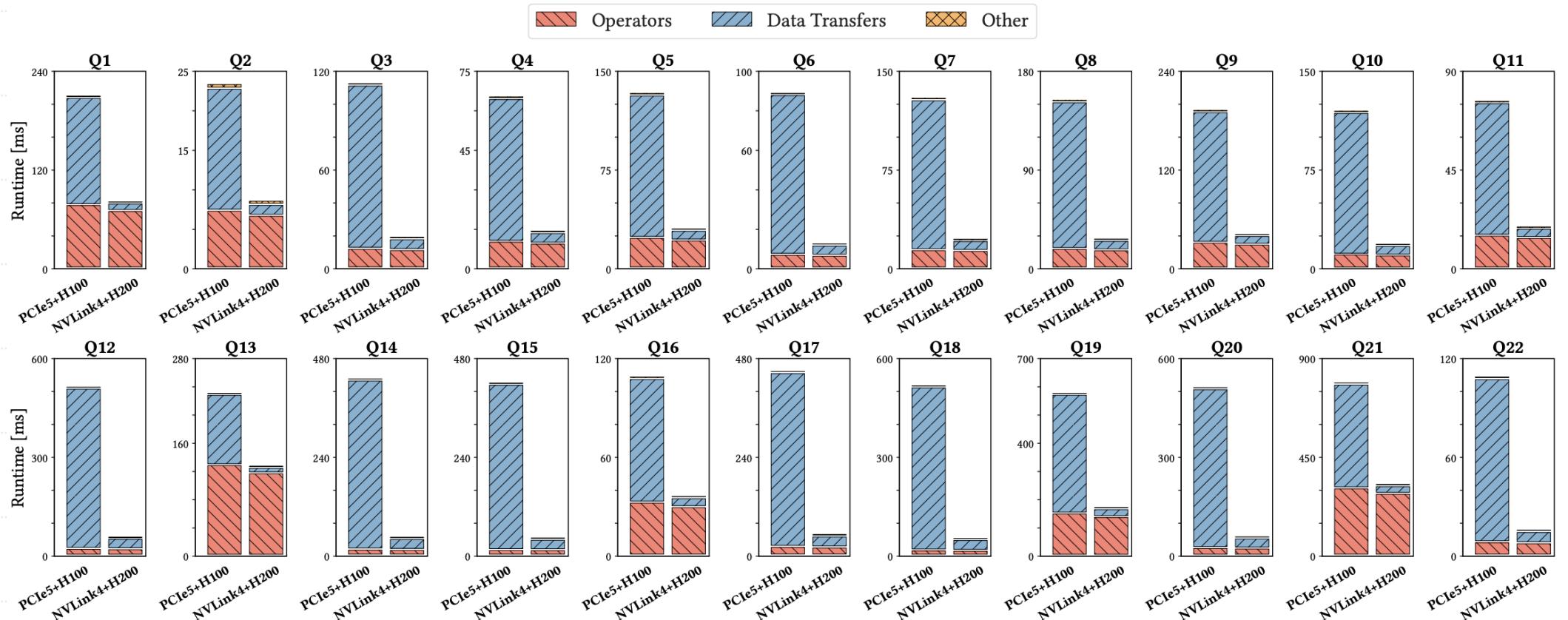
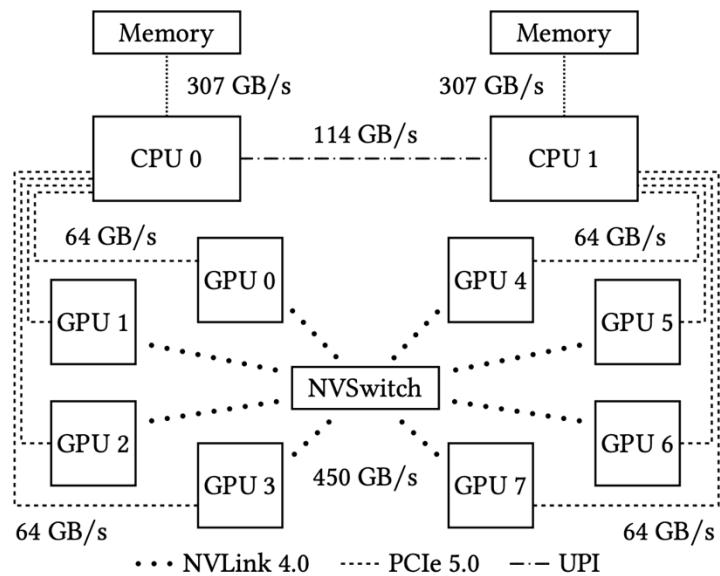
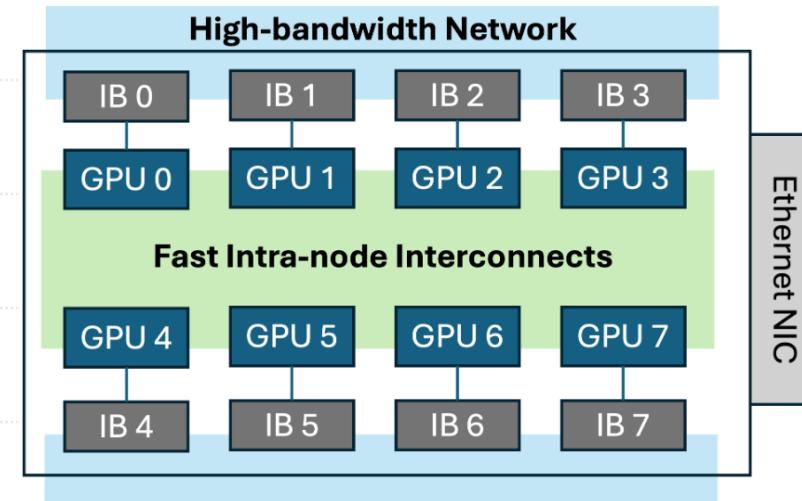
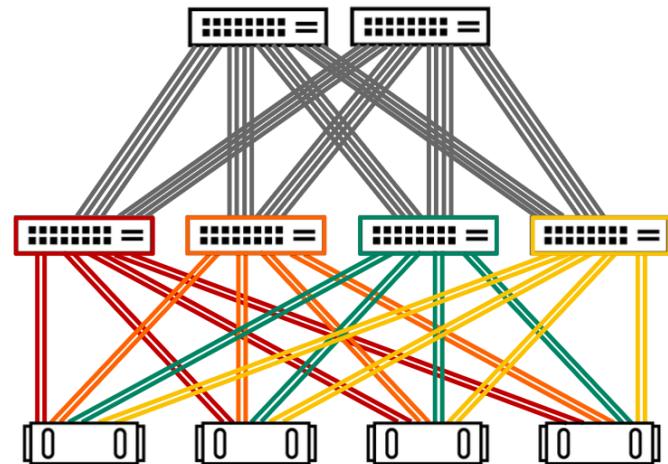
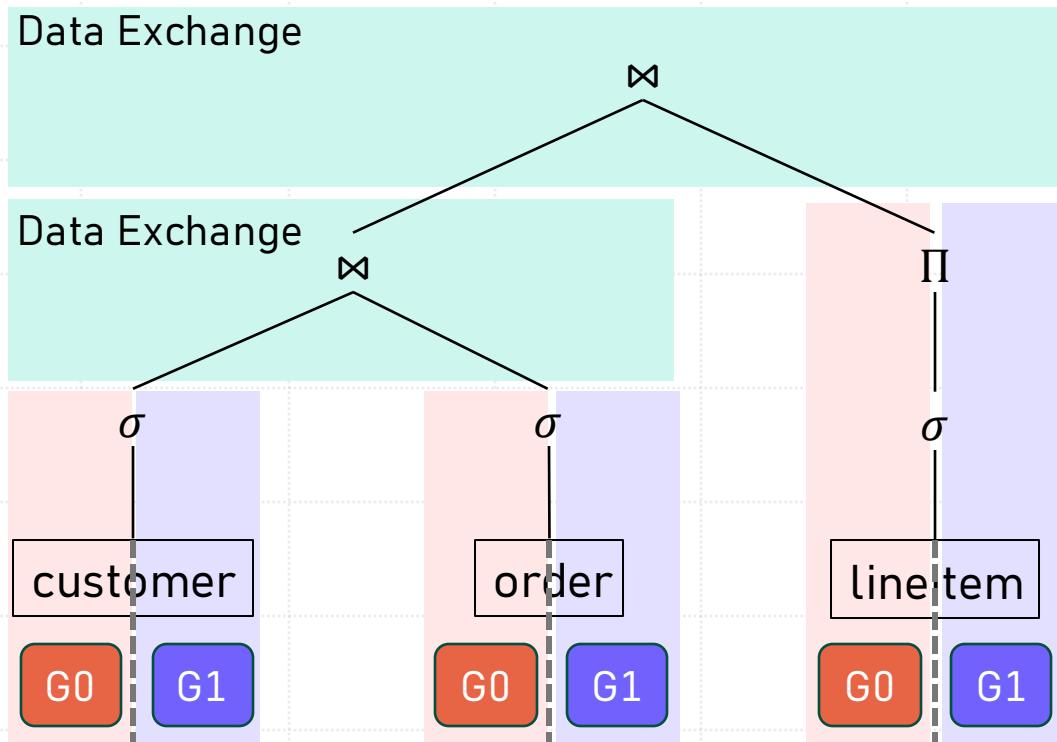
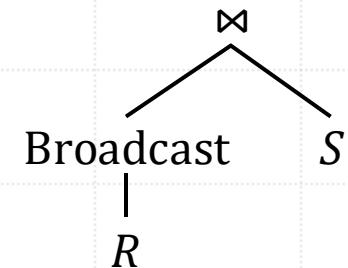


Figure 3: The full TPC-H benchmark (SF=10) run on hardware configurations $C_2 = \text{PCIe5} + \text{H100}$ and $C_3 = \text{NVLink4}+\text{H200}$.

Distributed GPU cluster

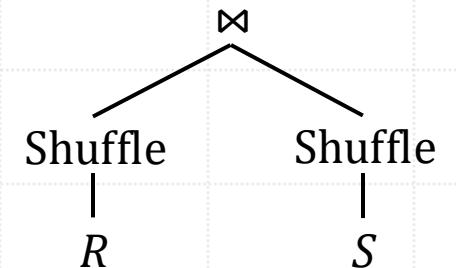
8x H100 SXM5 80 GB^[1]GPUs+NICs^[2]Switches^[3]

Distributed DB



Broadcast

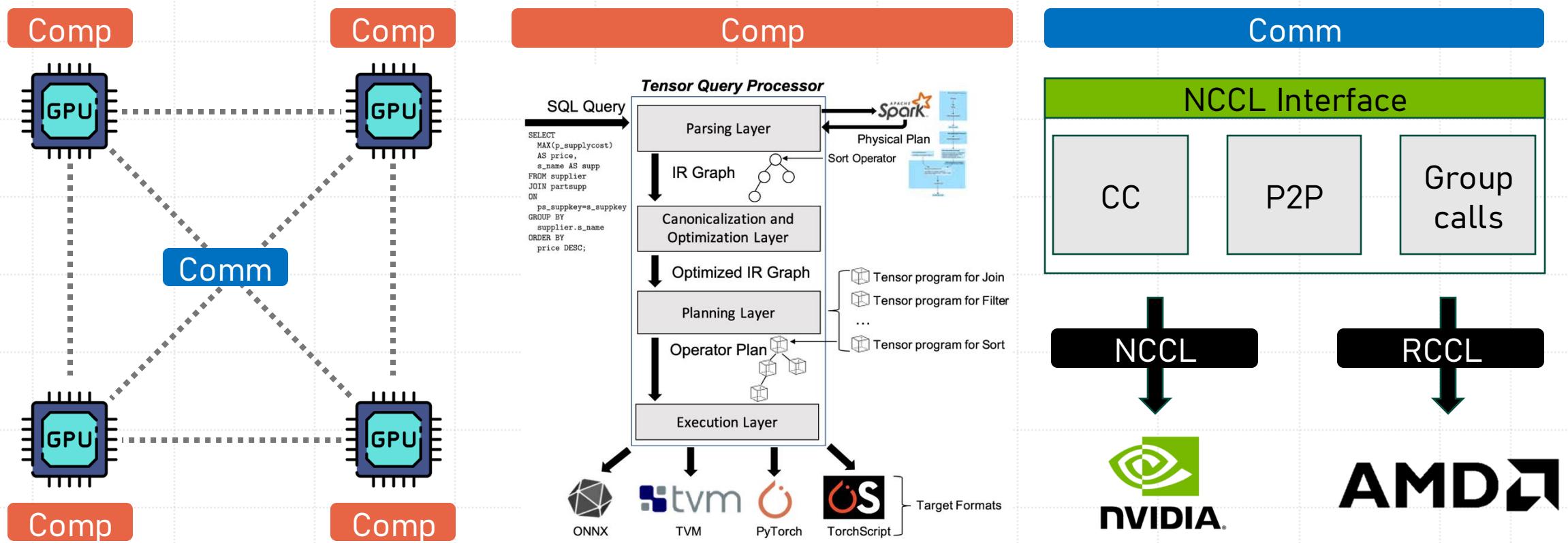
- Works well when the data is small.
- No extra overhead.
- Resistant to skew (later)



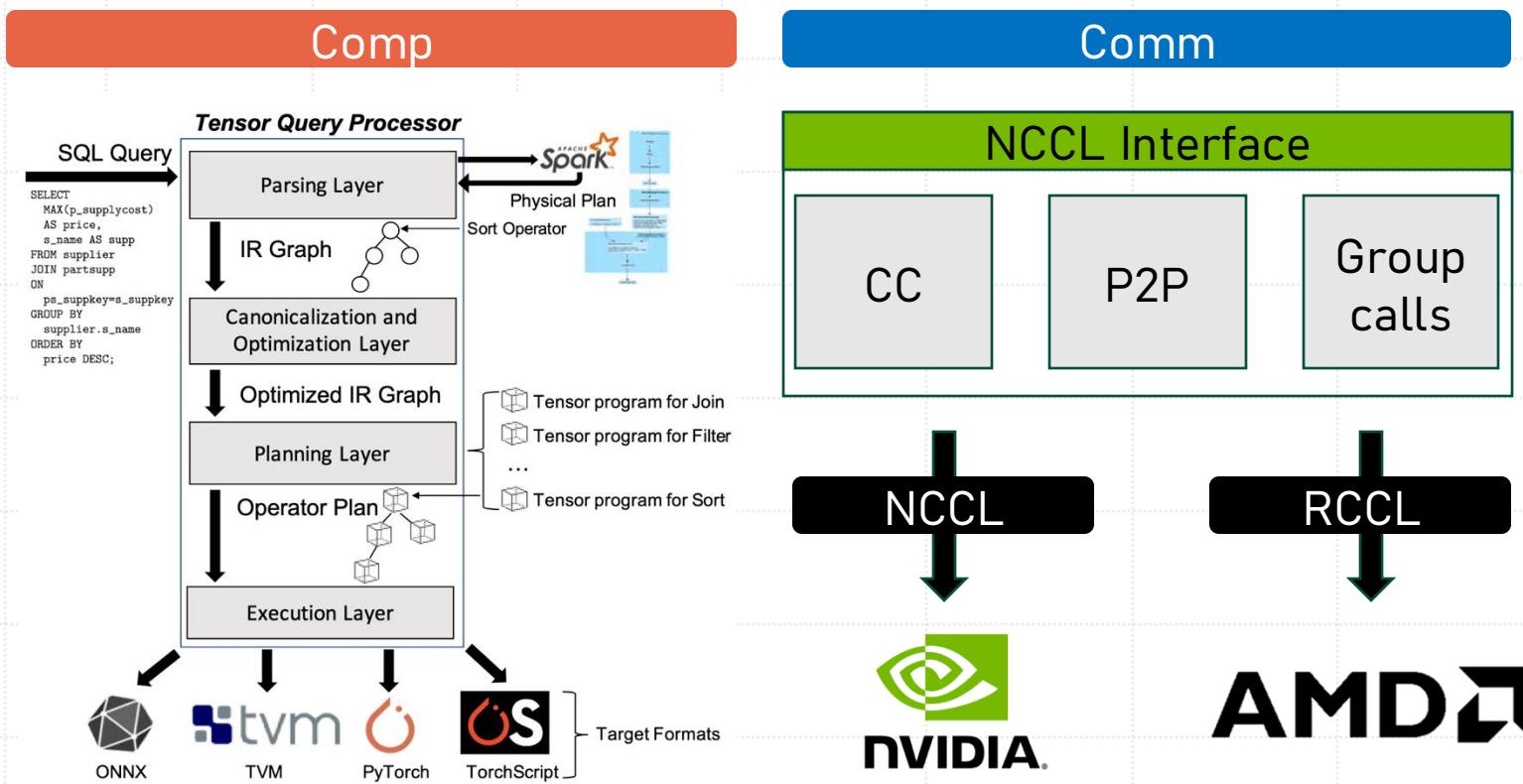
Shuffle

- Works well when the data is large.
- Extra overhead of partitioning data.
- Not very resistant to skew (later)

Our System



Our System



Using existing ML libraries gives

- Good out-of-box performance
- Portability
- Easy-to-develop

But it may not fully suit the DB workload, which often exhibits lots of **irregularity**.

Research question:

How efficiently can we build a DB with GPU acceleration using ML libraries?

Experiment Setup

- We report the total time of all 22 TPC-H queries at SF=1000 or 3000.
- Data are already partitioned and loaded into the GPUs' memory.

Table 3: Cluster Configurations. Eth: Ethernet. IB: InfiniBand.

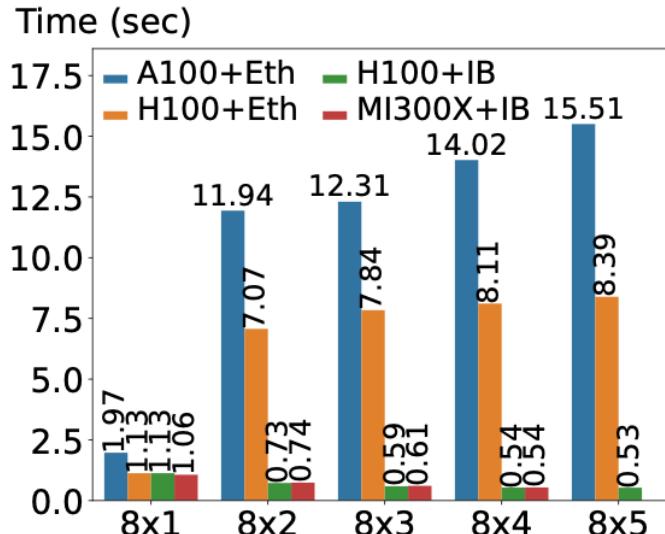
Cluster	GPU Type	HBM (GiB)	k	v	GPU Interconnect		CPU type	CPU Cores	CPU Mem (GiB)	Price/hour (USD)
					Intra-VM	Inter-VM				
1	NVIDIA A100	80	8	7	NVLink 300 GB/sec	Eth: 1x50 Gbits/sec	AMD EPYC 7V12	96	1800	32.77*
2	NVIDIA H100	79.6		5	NVLink 450 GB/sec	Eth: 1x100 Gbits/sec IB: 8x400 Gbits/sec	Intel Xeon Platinum 8480C		1900	98.32
3	AMD MI300X	191.5		4	Infinity Fabric 448 GB/sec	Eth: 1x100 Gbits/sec IB: 8x400 Gbits/sec	Intel Xeon Platinum 8480C		1850	63.6

* This is the price for 8x200 Gbits/sec Infiniband. The Eth version, where we run our experiment, is not publicly listed.

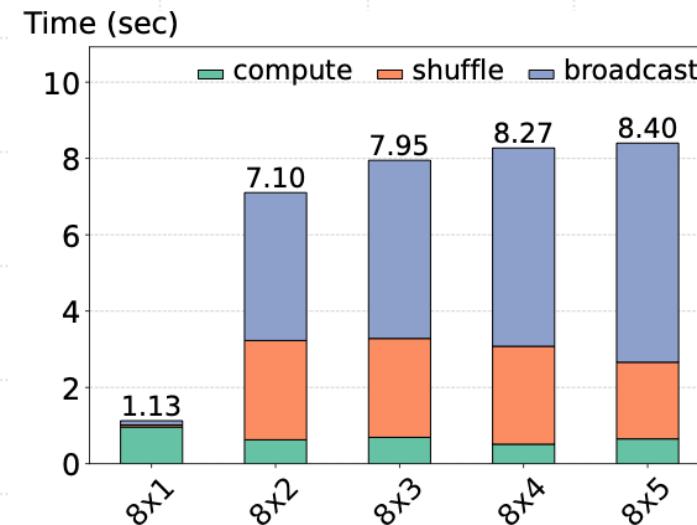
Key Results

How will the performance change if my cluster changes or my workload changes?

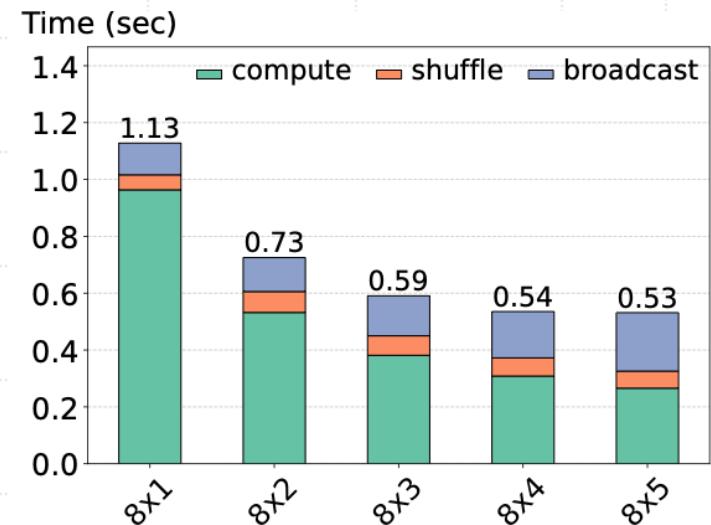
- Scale-out (more machines)?
- Scale-up (more GPUs/machine, faster NVLink and network)?
- Workload sensitivity (skew, data placement, etc.)



- GPU-based DBs can be 1-2 orders of magnitude faster than CPU-based ones.

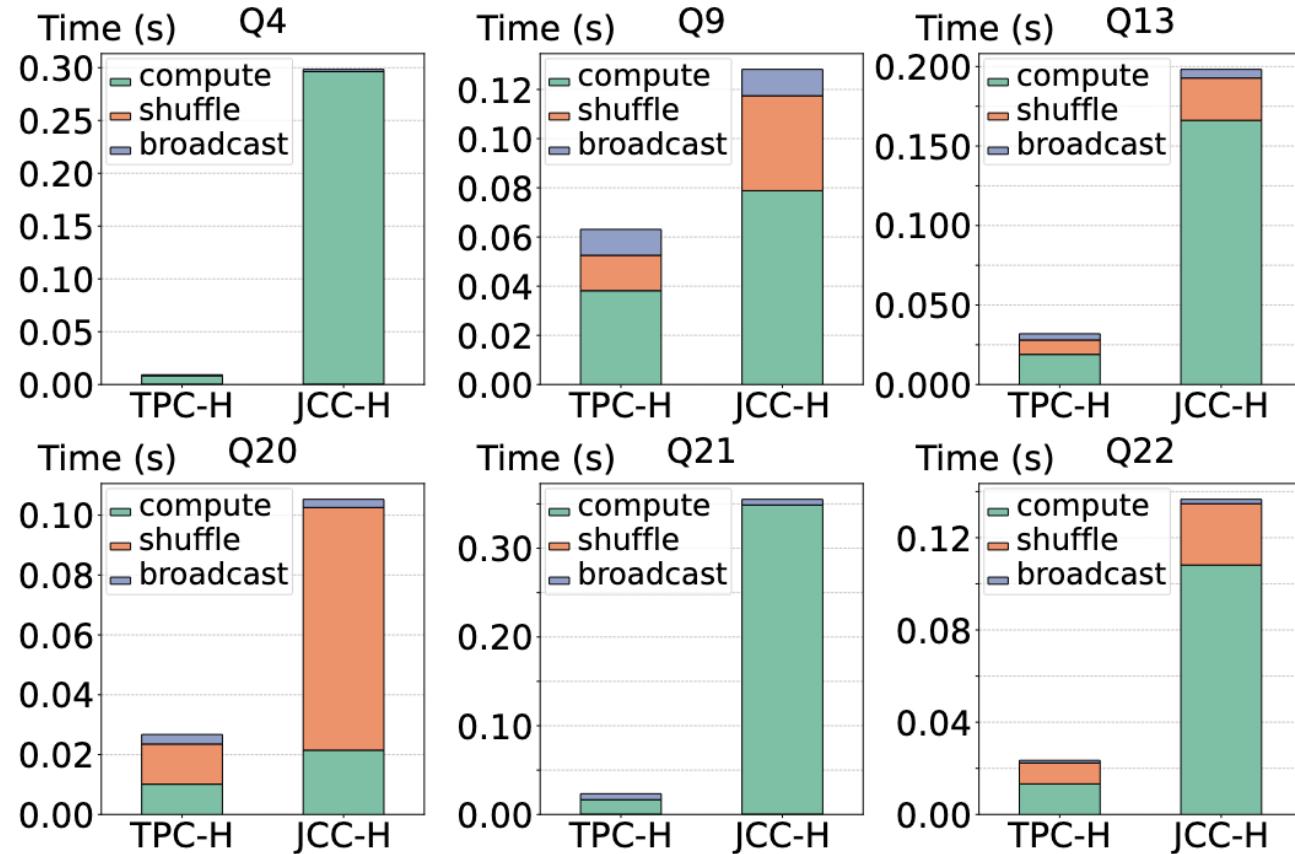


- A fast network is necessary for good scalability.



- With a fast network, the query exec transitions from GPU-bound to network-bound as the cluster grows.

Effect of *data skew*



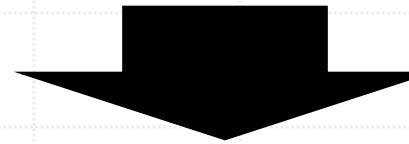
JCC-H 1TB
Same schema + same query + skewed data

Figure 21: Time breakdown comparison. (V=5)

Key Contributions

How will the performance change if my cluster changes or my workload changes?

- Scale-out (more machines)?
- Scale-up (more GPUs/machine, faster NVLink and network)?
- Workload sensitivity (skew, data placement, etc.)

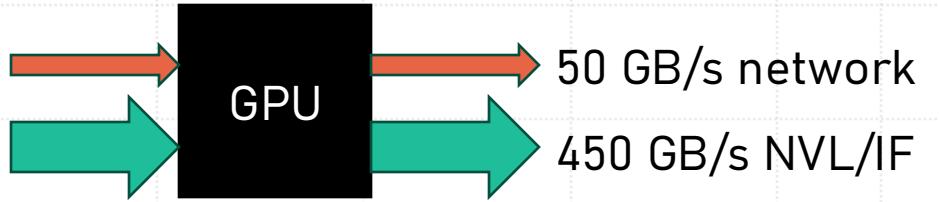


Model the computation and communication of query execution

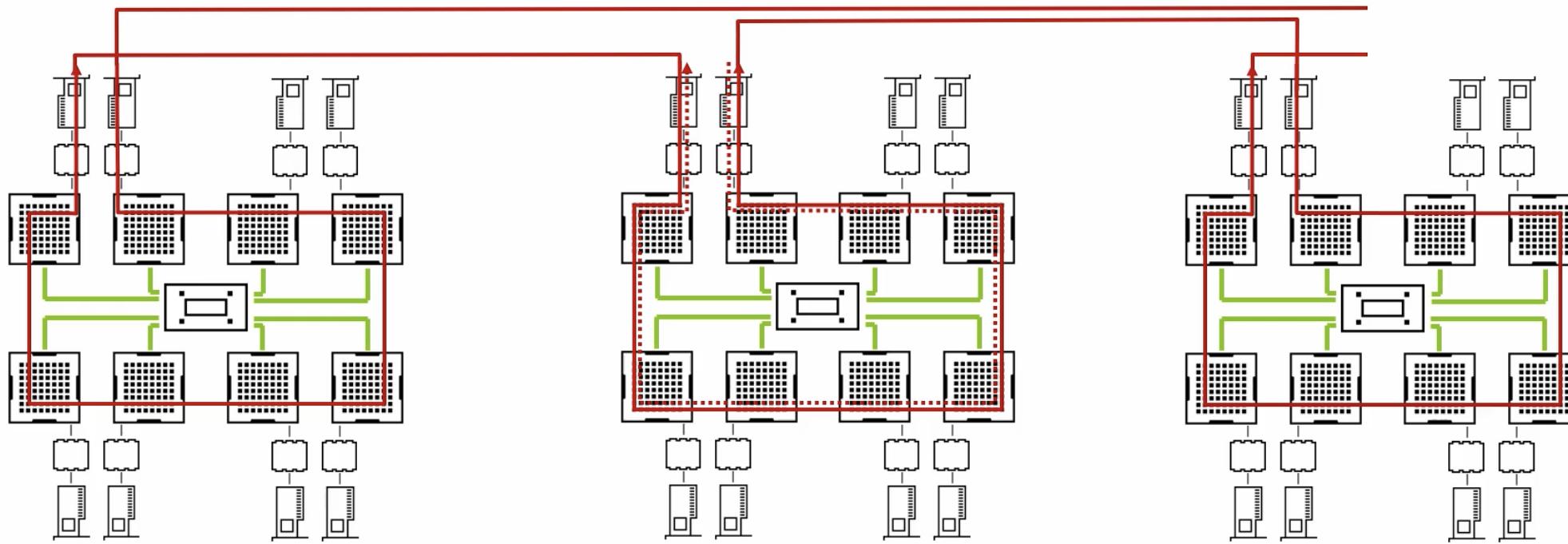
Challenges:

- The distributed GPU cluster has a very heterogeneous interconnect.
- The algorithm used by NCCL is obscure.
- Previous effort main focused on modeling ML workloads.

Modeling Broadcast



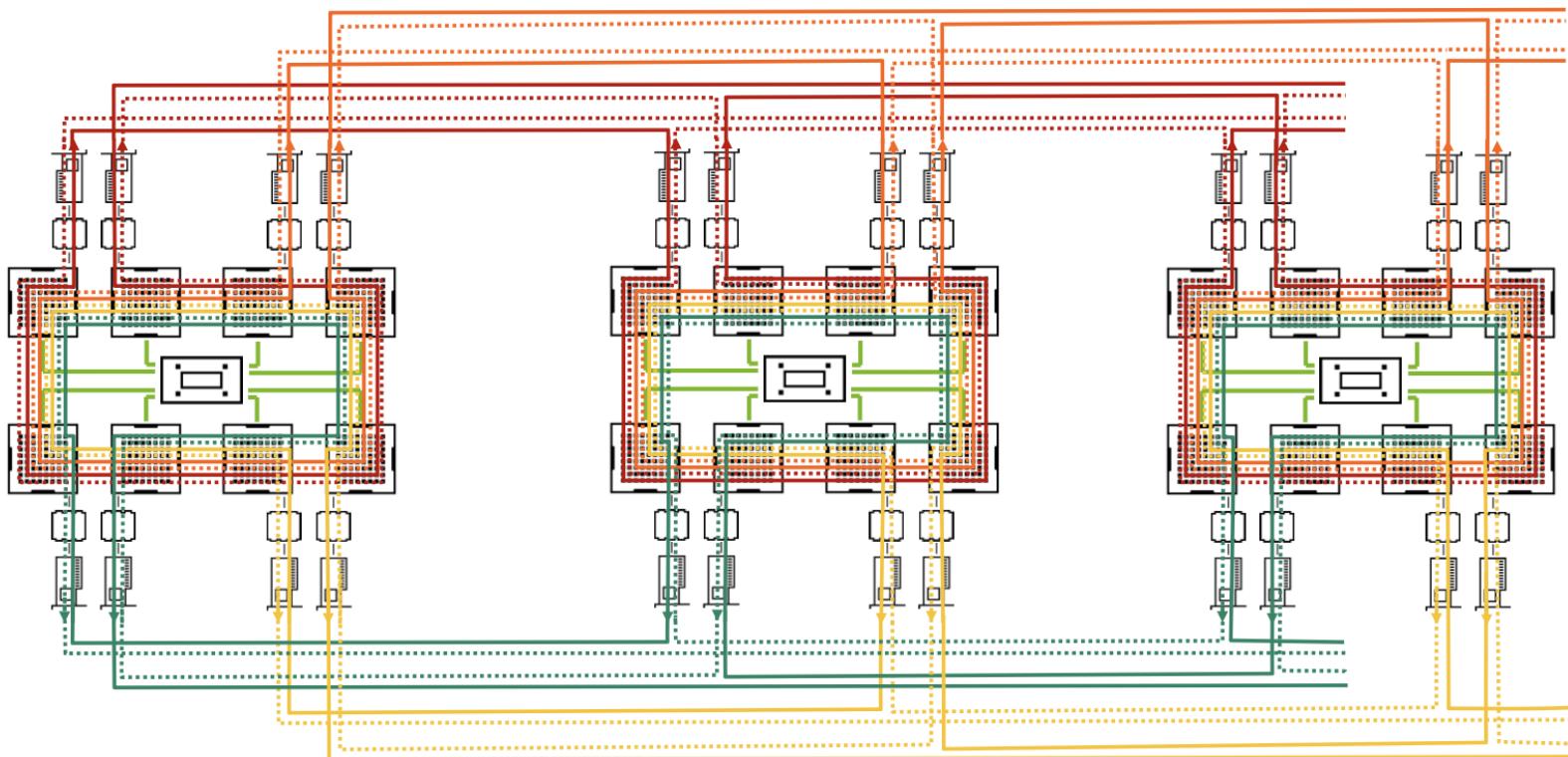
Formation of a single ring



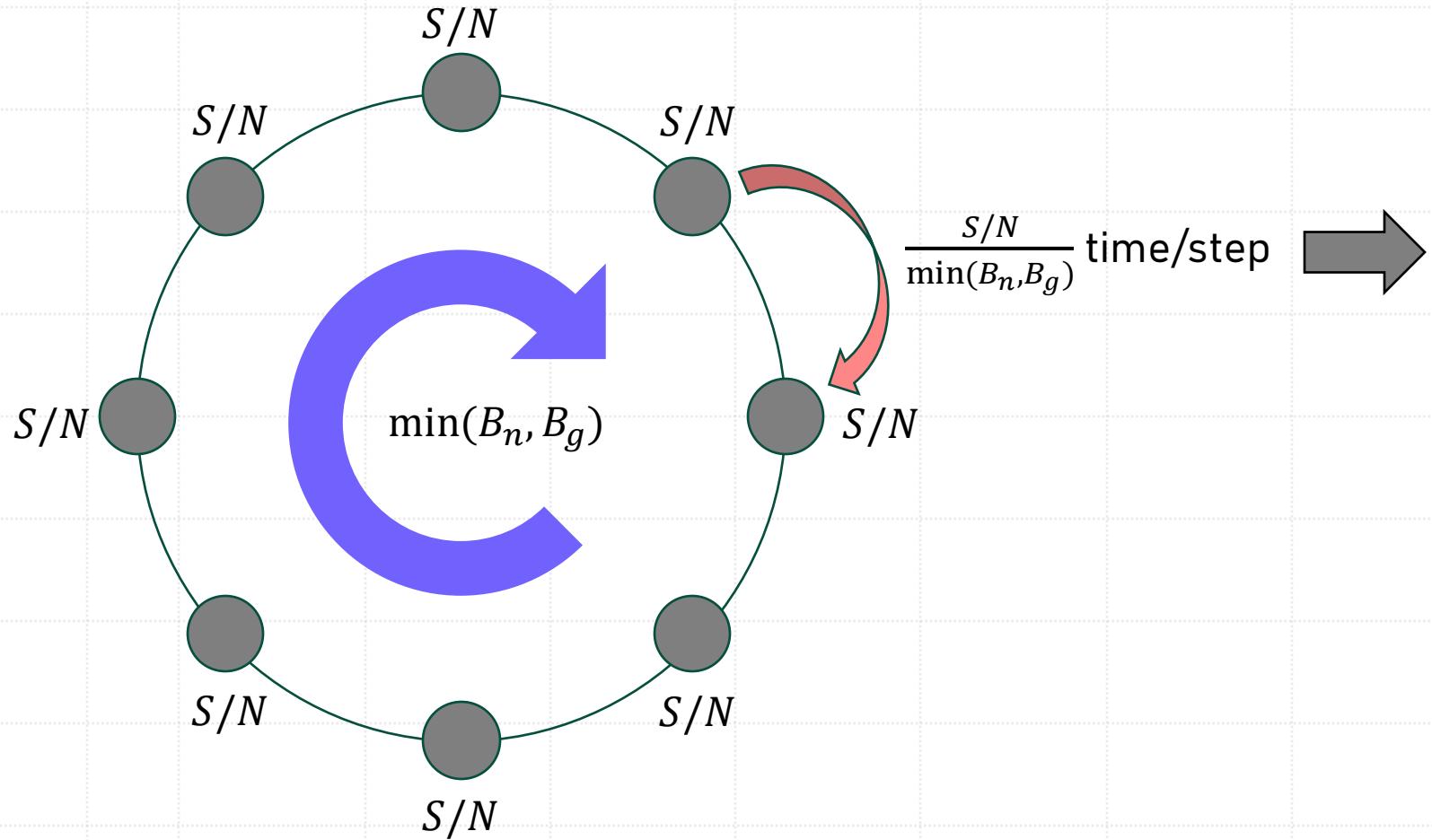
<https://www.nvidia.com/en-us/on-demand/session/gtc24-s62129/>

Modeling Broadcast

Formation of all rings



Modeling Broadcast



In total, you need $(N - 1)$ steps.

$$\rightarrow \text{Total time} = (N - 1) \frac{S/N}{\min(B_n, B_g)}$$

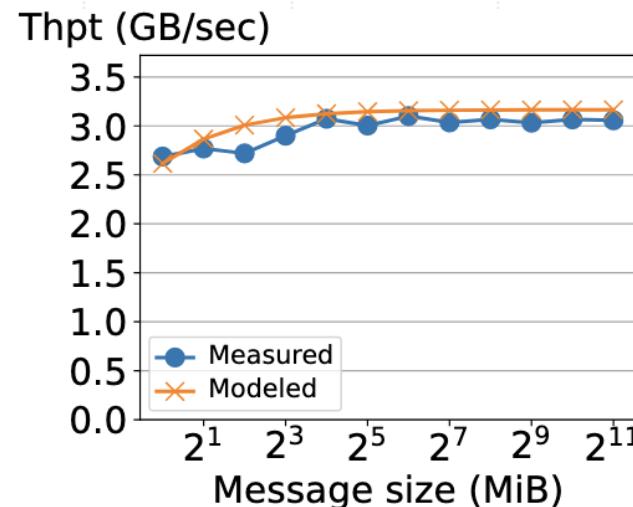
$$\rightarrow \text{Throughput} = \frac{N}{N-1} \min(B_n, B_g)$$

Takeaways:

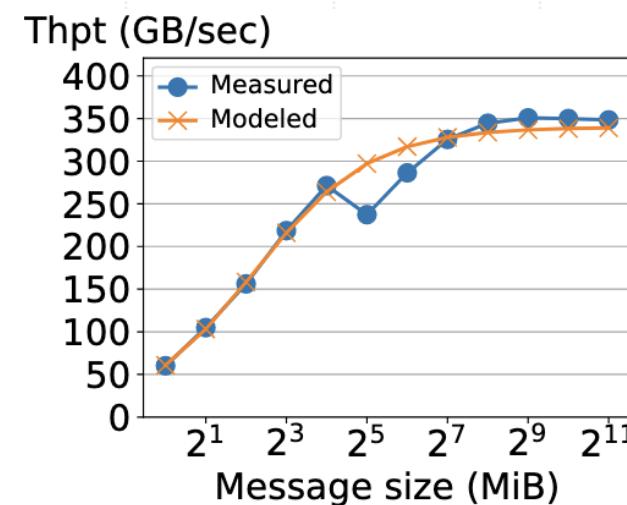
- Throughput **decreases** with #GPUs.
- Faster network won't improve the performance.

k	Number of GPUs per machine (or node, VMs)
V	Number of machines (or nodes, VMs)
N	Total number of GPUs = $k \times V$
B_g	Unidirectional inter-GPU bandwidth within each machine
B_n	Unidirectional network bandwidth at each machine
S	Total dataset size processed by the GPU cluster.
G_{ij}	The i -th GPU in the j -th machine.
$m_{ij \rightarrow pq}$	The message sent from G_{ij} to G_{pq} .

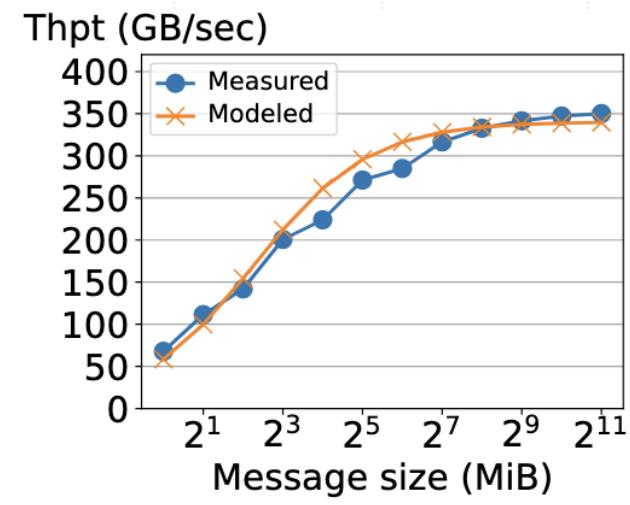
Modeling Broadcast



(a) Broadcast (H100+Eth).



(c) Broadcast (H100+IB).



(e) Broadcast (MI300X+IB).

Modeling Broadcast with Skew

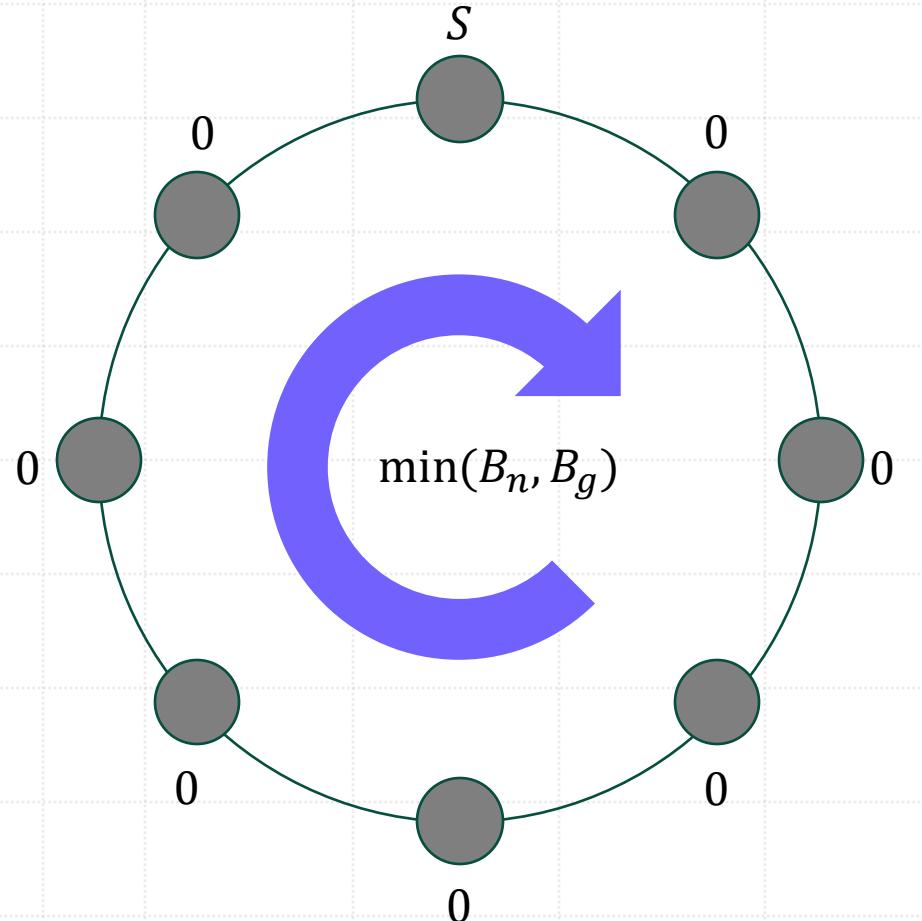


TABLE I (from <https://arxiv.org/abs/2507.04786>)
COMPARISON OF NCCL COMMUNICATION PROTOCOLS

	Simple	LL	LL128
Design Goal	High bandwidth	Low latency	Low latency and high bandwidth
Synchronization Mechanism	Memory fences (high overhead)	Flag-based synchronization	Flag-based synchronization
Payload	Data chunks	4B data + 4B flag	120B data + 8B flag
Bandwidth Utilization	Near peak	25 ~ 50% of peak [11]	~ 95% of peak [11]
Latency Per-hop	$\sim 6\mu s$	$\sim 1\mu s$	$\sim 2\mu s$

Due to pipelining and ring formation, the skewed data distribution has a minimal impact on performance, except for a slight increase in latency.

k	Number of GPUs per machine (or node, VM)
V	Number of machines (or nodes, VMs)
N	Total number of GPUs = $k \times V$
B_g	Unidirectional inter-GPU bandwidth within each machine
B_n	Unidirectional network bandwidth at each machine
S	Total dataset size processed by the GPU cluster.
G_{ij}	The i -th GPU in the j -th machine.
$m_{ij \rightarrow pq}$	The message sent from G_{ij} to G_{pq} .

Model Skew

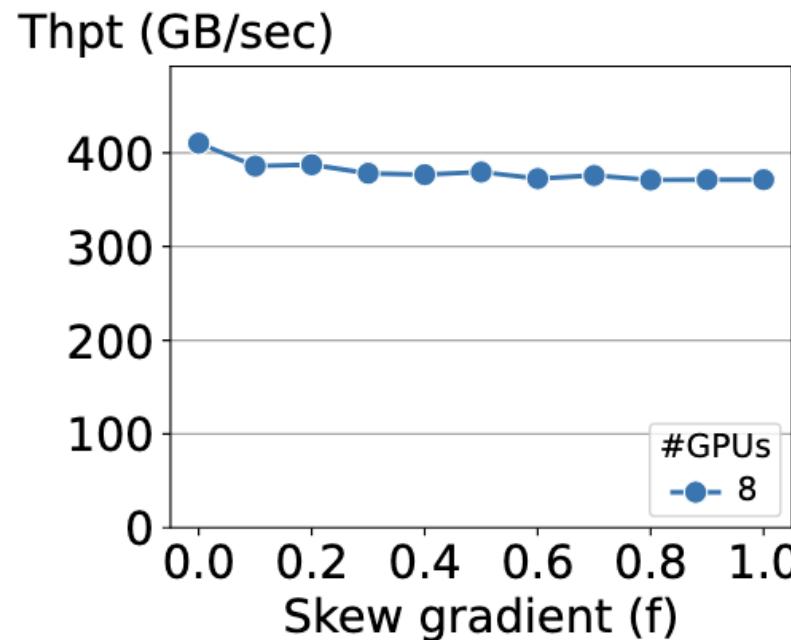
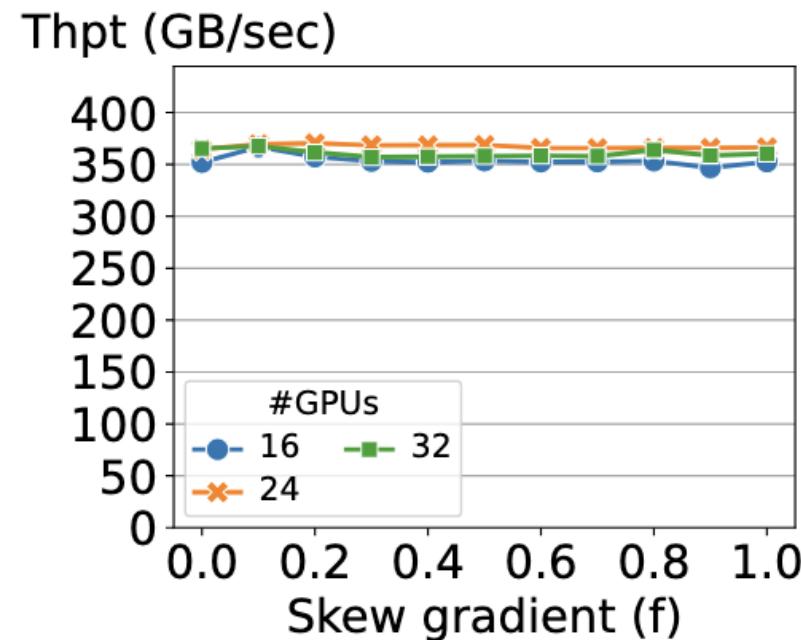
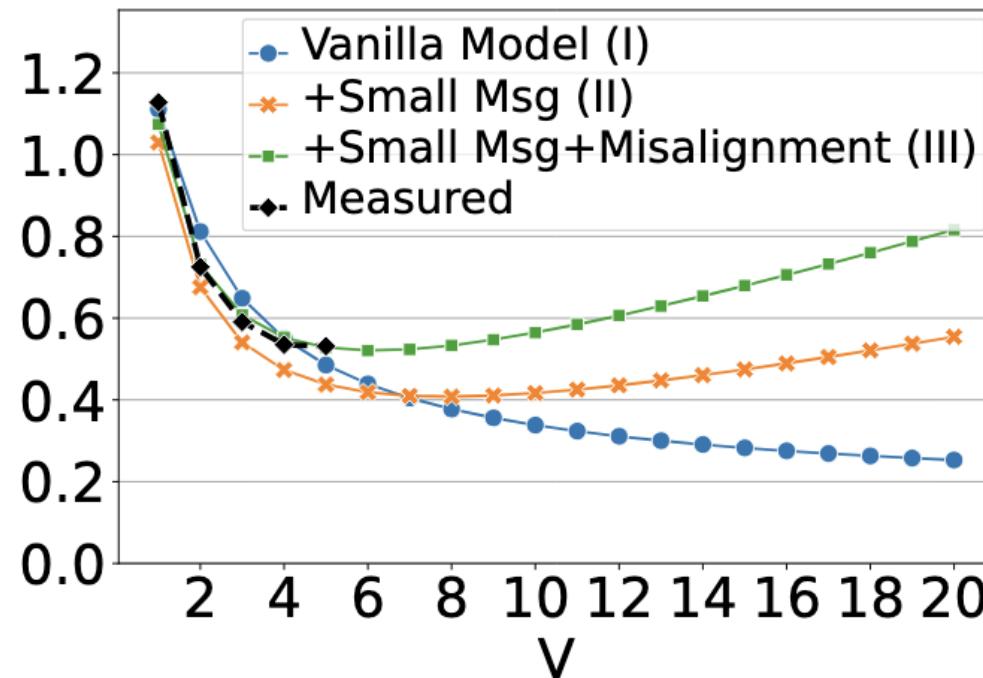


Figure 8: Broadcast + data skew.

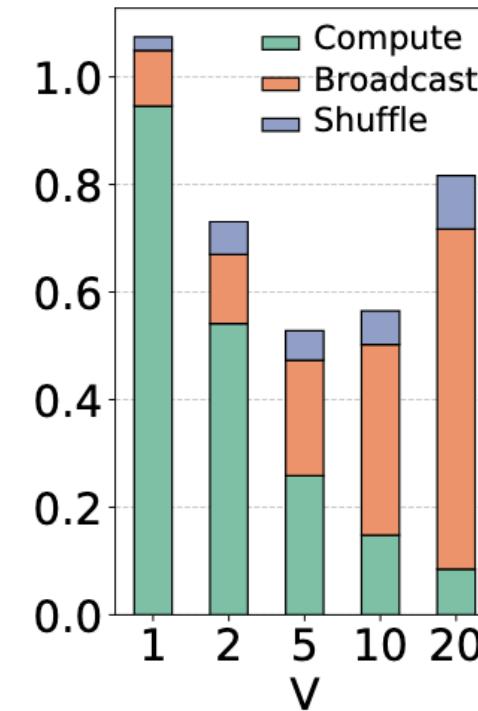
Model TPC-H Queries

Total Time (sec)



(a) Models for TPC-H projections.

Time (sec)



(b) Project breakdown.

Key Takeaways

- Using ML-based software to implement DBs gives good performance when the problem size is large enough.
- Small message sizes, skew, and buffer misalignment are the biggest sources of inefficiencies.
- Together with MaxBench, we see that with fast CPU-GPU, GPU-GPU, and GPU-network interconnects, the query performance often becomes GPU-bound.
➔ This calls back a previous work we published: *“Efficiently Processing Joins and Grouped Aggregations on GPUs”*, SIGMOD 2025.

Next Steps