DBs + GPUs:
Where are we and what's next?

Bowen Wu
Systems Group @ ETHz
Lunch Seminar, 31/10/2025

Why run databases on GPUSs?

Active Memory Memory

Threads Bandwidth Capacity
Nvidia V100 PCle 163,840 897 GB/s 16 GB _ =
Nvidia A100 SXM 221,184 1,935 GB/s 80 GB ..9:.)'9 tex PCle-5 e § e ouncat E%
Nvidia H100 PCle 233472 2,039 GB/s 80 GB i mwmmm,, ; 54
Nvidia H200 233,472 4.8 TB/s 141 GB | p— -l .
AMD MI300X ? 5.3 TB/s 192 GB
Massive parallelism and high memory bandwidth Fast interconnects and networks make it possible to
make GPUs suitable for accelerating databases. process large datasets at an unprecedented speed.

03.11.2025 2

Why run databases on GPUSs?

(N spointons (Dataral sppicasons)

Microsoft inks $33 billion in deals with _,-
'neoclouds' like Nebius, CoreWeave — . E3EAES
Nebius deal alone secures 100,000 Nvidia Databasos || (¢4 PC10 Ere) - "R E Broiewonadioconesst 15
GB300 chips for internal use oo l l - - - -
By Sunny Grimm published October 2, 2025 —ﬁl :

(a) Existing architecture. (b) Prospective architecture.
Data centers and clouds are being Making both DBs and Al run on the GPUs enables
increasingly dominated by GPUs, which cannot optimizations to make both systems run more
be fully utilized by Al. efficiently.

03.11.2025

Current State

- Research
= More than two decades of research
= Crystal (fully in-GPU)
= Operator studies
- Maximus/Eiger (SG), Microsoft TQP, SiriusDB

= Industry
= cuDF (NVIDIA), hipDF (AMD)
- BlazingSQL, Kinetica, HeavyDB, Voltron Data (Startups)
- Velox + Wave/cuDF (Meta)
= |BM, Databricks, Microsoft, ...

03.11.2025

Velox T
ollow
7ol Vielox 940 followers

Tw - ®
Velox now runs at GPU speed # IBM and NVIDIA have teamed up to bring
cuDF-powered GPU execution to Velox delivering big gains for #Presto
and Apache Gluten.

Velox @ANVIDIA cuDF
Executable Pipelines GPU Pipelines

presto - Presto C++

—_—

(Interactive SQL)

SpQF’QZ Gluten

(Bulk sQL)

DriverAdapter

Introduction to GPU-based DB

Final results of the query often need to be

RESULT
SORT

sent back to the CPU.

. Store and reload from the device memory.

__

I8

|
|
|

Fg

Kernel 1
Kernel 2
Kernel N

|
|
|

Pog-

Base tables are stored in CPU/GPU memory.
If stored in CPU memory, then it needs to be

CUSTOMER ORDERS

moved to the GPU before processing.

03.11.2025

|s the query exec bound by GPU or IC?

- MaxBench - Single-GPU DB Benchmark

- Authors: Marko Kabi¢, Bowen Wu, Jonas Dann, Gustavo Alonso

Table 1: Hardware Configurations for the empirical evaluation.

Configuration Cy = PCIe3+A100 Cy = PCle5+H100 C3 = GH200 (NVLink4+H200) C4 = PCIe4+RTX3090

CPU Intel Xeon Platinum 8171IM AMD EPYC 9124 NVIDIA Grace AMD EPYC 7313

CPU cores 2x6 2x16 72 ARM Neoverse V2 cores 2x16

GPU NVIDIA A100 40GB NVIDIA H100 80GB NVIDIA H200 96GB NVIDIA RTX3090 24GB

GPU Mem. Bandwidth 1.55 TB/s 4 TB/s 4 TB/s 0.936 TB/s

GPU clock (base—boost) 765-1410 MHz 1080-1785 Mhz 1980-1980 Mhz 1395-2100 MHz
—Pevwrereap 400 400 62415 N--000W- S50

Interconnect (IC) PClIe 3.0 PCle 5.0 NVLink 4.0 PCle 4.0

1C Bandwidth (1-way) 16 GbB/s 64 Gb/s 450 GbB/s 32 GbB/s

03.11.2025

MaxBench - Single-GPU DB Benchmark

S Other

EESN Operators

Q5

Q6

EZZZ] Data Transfers

Q7

Q8

Q9

Q10 Q11

150 90

240

240

Runtime [ms]

75

04

45

150

100

150

75

W
\2‘61 ea";é #&*‘6‘]‘ e&* &*
C < 3 9 G‘Y’
600 480 Q15 900
o
g 300 240 1 240 1 300 300 450
g
P~
T FZ7 loral vl
0 0 O.Q o == == L= ==l 0 | S— 0
o o o0 o o0 o0 o o o o0 o0 o0
(& \e’:)"x“ &,,u*‘ﬁ \ea*“‘ o P ‘ga& o \ga*““ W \@*"“ Y wa*“‘ > o
C QO 9 o o e \a‘f“& < _\@& C @4\};& < x@‘"‘&‘

Figure 3: The full TPC-H benchmark (SF=10) run on hardware configurations C, = PCle5 + H100 and C3 = NVLink4+H200.

03.11.2025

Distributed GPU cluster

Memory | | Memory |

High-bandwidth Network

307 GB/s 307 GB/s
o g g g
Al CPUO T T T T CPUI [t
64 GB/s 64 GB/s GPU 0 o

__ 3
| GPUO GPU 4 Fast Intra-node Interconnects 3
H--1GPU 1 . GPU 5 =
) S R N L et : Z
| woen E == E :
ISP T opu -
: : : E IB4 IB6
P GPU3| #40GB/s |gpu7| L— g
64 GB/s 64 GB/s

.+« NVLink 40 - PCle50 —— UPI

8x H100 SXM5 80 GBI GPUs+NICsl?! Switches!3]

03.11.2025 8

Distributed DB

X X

Data Exchange
> /\ /\

/\ Broaldcast S Shlifﬂe Shulfﬂe
Data Exchange R R S

B Il

/\ Broadcast Shuffle

i 7 ¢ * Works well when * Works well when
‘ ‘ the data is small. the data is large.

custci)mer orije,- linejtem * No extra overhead. e« Extra overhead of

: : ' * Resistant to skew partitioning data.
| |

| |

| |

i
E (Later) * Not very resistant

to skew (later)

03.11.2025

Our System

Comm

Tensor Query Processor
SQL Query Sk
Parsing Layer)

O
o
5

SELECT
MAX(p_supplycost)

Physical Plan ==

¢ * acome 18 supp IR Graph «—|Sort Operator
* ¢ FROM suppli rap — G
*e o 300H partanes ; rou p
‘ ‘ : cc P2P
¢ ¢ ps_suppkey=s_suppkey
* . H -
*e ¢ CBOvR ST Canonicalization and ca ll S
* * supplier.s_name Hi-alie
* * e e oes Optimization Layer
price DESC;

l Optimized IR Graph [Tensor program for Join

r:fj Tensor program for Filter

Planning Layer

Operator Plan R [Tensor program for Sort

9D

SN EEEEEEEEEEEEEEEEESR
5

*
»
* ‘.

Execution Layer
IEEEEEEEEEEEEEEEEEEEDR

\
/5 =] . . a

"1‘ !. tV m :|» Target Formats
C O m [ONN: TVM Pél’o)rch TorchScript nVI D IA°

)

-
<3

03.11.2025 10

Our System

Tensor Query Processor ”
SQL Query spans |1
Parsing Layer)

SELECT i ;
MAKCp_supp1ycost) Ettsioaltien S
:Snixcié e <«+—— | Sort Operator —

FROM supplier IR Graph =

JOIN partsy PP y

oN
ps_suppkey=s_suppkey —

GROUP BY Canonicalization and
supplier.s_name L

ORDER BY Optimization Layer

price DESC;

rﬁ Tensor program for Filter
Planning Layer

l Optimized IR Graph ‘|:[I1 Tensor program for Join

[] Tensor program for Sort
Viaghvl
s I

l Operator Plan;ﬂ I
@

Execution Layer

'/] 1 N
&® %ovm O 88 }
M PyTorch TorchScript

ONNX TV

03.11.2025

Comm

Group

CC P2P
calls

-

>

NVIDIA.

Using existing ML libraries gives
* Good out-of-box performance
« Portability
 Easy-to-develop

But it may not fully suit the DB
workload, which often exhibits
lots of irregularity.

Research question:

How efficiently can we build a DB
with GPU acceleration using ML
libraries?

11

Experiment Setup

= We report the total time of all 22 TPC-H queries at SF=1000 or 3000.

- Data are already partitioned and loaded into the GPUs" memory.

Table 3: Cluster Configurations. Eth: Ethernet. IB: InfiniBand.

e | orutype | BNV omt et T gy | PO [RO T
1 NVIDIA A100 80 7 3 [?;Vé]i?ic Eth: 1x50 Gbits/sec %EIEYC 1800 32.77
| e |+ 5] Nk RE G| WX | e | e
s | AMDMIBOX | o1 ||| S s see | Platinum 3480C 1850 636

" This is the price for 8x200 Gbits/sec Infiniband. The Eth version, where we run our experiment, is not publicly listed.

03.11.2025

Key Results

Time (sec)

= A100+Eth . H100+IB
== H100+Eth == MI300X+IB 15.51
14.02

17.5
15.0
12.5
10.0
7.5
5.0
2.5
0.0

GPU-based DBs can be
1-2 orders of magnitude
faster than CPU-based
ones.

03.11.2025

10

8

6

workload changes?
Scale-out (more machines)?

Time (sec)

== compute == shuffle == broadcast

8.27 8.40

7.95
7.10
1.13 I
Q;"‘\' Q;Q' %‘C) QS*P‘ Q??)

A fast network is necessary
for good scalability.

How will the performance change if my cluster changes or my

* Scale-up (more GPUs/machine, faster NVLink and network)?
« Workload sensitivity (skew, data placement, etc.)

Time (sec)
1.4/ = compute = shuffle = broadcast

1.24
1.04
0.8

1.13
0.73
0.6 0.28 .54 053
0.4
0.2]
0.0
& P P

 With a fast network, the

query exec transitions from
GPU-bound to network-
bound as the cluster grows.

13

Effect of data skew

Time (s)

Q4

0.30
0.25
0.20
0.15
0.10
0.05
0.00

= compute
= Sshuffle
= broadcast

| —

Time (s)

TPC-H

JCC-H

Q20

0.10
0.08
0.06
0.04
0.02

= compute
= shuffle
= broadcast

0.00

03.11.2025

TPC-H

JCC-H

Time (s)

0.12
0.10
0.08
0.06
0.04
0.02
0.00

Time (s)

0.30

0.20

0.10

0.00

Q9

= COmpute
= Shuffle
= broadcast

TPC-H

JCC-H

Q21

= Compute
= Shuffle
= broadcast

—

TPC-H

JCC-H

Time (s)

0.200

0.150

0.100

0.050

0.000

Time (s)

0.12

0.08

0.04

0.00

Q13

= compute
= shuffle
= broadcast

TPC-H

JCC-H

Q22

= compute
= shuffle
= broadcast

TPC-H

Figure 21: Time breakdown comparison. (V=5)

JCC-H

JCC-H 1TB
Same schema + same query + skewed data

14

Key Contributions

I How will the performance change if my cluster changes or my
workload changes?

e Scale-out (more machines)?

« Scale-up (more GPUs/machine, faster NVLink and network)?
« Workload sensitivity (skew, data placement, etc.)

Challenges:
i * The distributed GPU cluster has a very
: heterogeneous interconnect.
* The algorithm used by NCCL is obscure.
Previous effort main focused on
modeling ML workloads.

03.11.2025 15

50 GB/s network
450 GB/s NVL/IF

Modeling Broadcast

Formation of a single ring

= B Thomon]

B= = =
B ED LBl mEED
0o 00 0o 00 =)

. ils il 00 00
og Bp gg @p gg Bp

https://www.nvidia.com/en-us/on-demand/session/gtc24-s62129/

03.11.2025 16

Modeling Broadcast

Formation of all rings

https://www.nvidia.com/en-us/on-demand/session/gtc24-s62129/
03.11.2025

17

Modeling Broadcast

S/N

S/N .
min(By,Bg) time/step #

S/N S/N

S/N

S/N

03.11.2025

Number of GPUs per machine (or node, VM)

k
A’ Number of machines (or nodes, VMs)
N

Total number of GPUs =k X V

By Unidirectional inter-GPU bandwidth within each machine
B, Unidirectional network bandwidth at each machine
S Total dataset size processed by the GPU cluster.
Gij The i-th GPU in the j-th machine.
Mijopq The message sent from G;; to Gpg-

In total, you need (N — 1) steps.

n (N — 1) SIN_
> Total time = (N — 1) s
> Throughput = = min(B,, By)

Takeaways:
* Throughput decreases with

#GPUs.

* Faster network won't improve

the performance.

18

Modeling Broadcast

Thpt (GB/sec)

3.5
3.0
2.5
2.0
1.5;
1.0
0.51

)

-®- Measured
Modeled

0.0

2'1 2‘3 2'5 2‘7 2‘9 2'11
Message size (MiB)

(a) Broadcast (H100+Eth).

03.11.2025

Thpt (GB/sec)

400+ -®- Measured
3501 Modeled —— 999

300 \/
250
200 /
1501 B
100{ &
50 %
0

21 23 25 27 29 97ll
Message size (MiB)

(c) Broadcast (H100+IB).

Thpt (GB/sec)
400 -@ Measured
350 Modeled]
300+
250
2001
150+ A
100+ ~
50 /
0

2'1 2'3 2'5 2‘7 2‘9 211
Message size (MiB)

(e) Broadcast (MI300X+IB).

19

Number of GPUs per machine (or node, VM)

k
A’ Number of machines (or nodes, VMs)
N

Total number of GPUs =k X V

By Unidirectional inter-GPU bandwidth within each machine

B, Unidirectional network bandwidth at each machine
S Total dataset size processed by the GPU cluster.
Gij The i-th GPU in the j-th machine.

The message sent from Gj; to Gpg-

Modeling Broadcast with Skew

TABLE I (from https://arxiv.org/abs/2507.04786)
COMPARISON OF NCCL COMMUNICATION PROTOCOLS

Simple LL L1128

. . . Low latency and
Design Goal High bandwidth Low latency high bandwidth

Synchronization = Memory fences Flag-based Flag-based
Mechanism (high overhead) synchronization synchronization
4B data + 120B data +
Payload Data chunks 4B flag 8B flag
Bandwidth Near peak 25 ~ 50% ~ 95%
Utilization pe of peak [11] of peak [11]
Latency Per-hop ~ bus ~ 1lps ~ 2us

Due to pipelining and ring formation, the
skewed data distribution has a minimal
Impact on performance, except for a
slight increase in latency.

20

03.11.2025

Model Skew

Thpt (GB/sec)

400+
300+
200+
100-

0

03.11.2025

.\

#GPUs
-e- 8

0.0 0.2 0.4 0.6 0.8 1.0
Skew gradient (f)

0

Thpt (GB/sec)

400
350-
300-
250+
200+
150
100

50

#GPUs
-9- 16 -m- 32
24

0.0 0.2 0.4 0.6 0.8 1.0
Skew gradient (f)

Figure 8: Broadcast + data skew.

21

Model TPC-H Queries

i Time (sec
Total Time (sec) (_) e
12 - Vanilla Model (1) 1.0{[| = Broadcast
’ 1 +Small Msg (Il) == Shuffle
1.0 + +Small Msg+Misalignment (lll) | 0.8 -
-»- Measured _ B -
0.8 % 0 o6{l| [] _
0.6 N -
A S 0.4
0.4/ B~
0 2 | "‘.-—-.--.—-.__.__.__.__.__. 0 2 | [|
0.0 —

2 4 6 8101214161820 0015 =% 1020
\ V
(a) Models for TPC-H projections. (b) Project breakdown.

03.11.2025

Key Takeaways

= Using ML-based software to implement DBs gives good performance when the
problem size is large enough.

= Small message sizes, skew, and buffer misalignment are the biggest sources of
inefficiencies.

= Together with MaxBench, we see that with fast CPU-GPU, GPU-GPU, and GPU-network
interconnects, the query performance often becomes GPU-bound.

=>» This calls back a previous work we published: “Efficiently Processing Joins and Grouped
Aggregations on GPUs”, SIGMOD 2025.

03.11.2025 23

Next Steps

	Slide 1: DBs + GPUs: Where are we and what’s next?
	Slide 2: Why run databases on GPUs?
	Slide 3: Why run databases on GPUs?
	Slide 4: Current State
	Slide 5: Introduction to GPU-based DB
	Slide 6: Is the query exec bound by GPU or IC?
	Slide 7: MaxBench – Single-GPU DB Benchmark
	Slide 8: Distributed GPU cluster
	Slide 9: Distributed DB
	Slide 10: Our System
	Slide 11: Our System
	Slide 12: Experiment Setup
	Slide 13: Key Results
	Slide 14: Effect of data skew
	Slide 15: Key Contributions
	Slide 16: Modeling Broadcast
	Slide 17: Modeling Broadcast
	Slide 18: Modeling Broadcast
	Slide 19: Modeling Broadcast
	Slide 20: Modeling Broadcast with Skew
	Slide 21: Model Skew
	Slide 22: Model TPC-H Queries
	Slide 23: Key Takeaways
	Slide 24: Next Steps

